Double Stratified MHD Stagnation Point Slip Flow Over a Permeable Shrinking/Stretching Surface in A Porous Medium

نویسندگان

چکیده

The intention of this article is to investigate the impact slip MHD stagnation point flow over a permeable shrinking/stretching sheet with double stratification in porous medium. Employing appropriate similarity transformations and non-dimensional variables, governing partial differential equations were reduced into set nonlinear ordinary equations. These solved using shooting method influence pertinent variables on velocity, temperature concentration are computed analyzed. It was found that slips have propensity control boundary layer as velocity increases, momentum, thermal, thickness become thinner for slip. Therefore, acts boost enhancement profile region, whereas profiles decelerate also shown skin friction coefficient has decreased values increase while local Nusselt number Sherwood increasing. A comparison previous studies available literature been done an excellent agreement by comparing numerical results two decimal places which supports validity present analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

MHD Stagnation Point Flow and Heat Transfer of Williamson Fluid over Exponential Stretching Sheet Embedded in a Thermally Stratified Medium

Magnetohydrodynamics (MHD) stagnation point flow and heat transfer of a Williamson fluid in the direction of an exponentially stretching sheet embedded in a thermally stratified medium subject to suction present in this examination. Suitable transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into highly nonlinear ordinary di...

متن کامل

Analytical Solution for MHD flow Due to a Permeable Stretching Surface Embedded in a Porous Medium

This paper is devoted to introduce analytic solutions by Differential Transform Method-Pade approximants with theoretical study for the problem of the hydromagnetic flow due to a permeable stretching surface embedded in a porous medium in the presence of transverse magnetic field. The governing momentum equation which is a nonlinear partial differential equation is reduced into a nonlinear ordi...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

MHD Slip Flow and Convective Heat Transfer of Nanofluids over a Permeable Stretching Surface

MHD slip flow and convective heat transfer of nanofluids over a vertical stretching surface subjected to injection has been analyzed. Two types of nanofluids such as Copper-Water nanofluid and Alumina-Water nanofluid are considered for the present study. The Boundary layer equations of motion and energy which are non-linear partial differential equations are reduced to non-linear ordinary diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

سال: 2022

ISSN: ['2289-7879']

DOI: https://doi.org/10.37934/arfmts.90.2.6472